Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 481: 75-94, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597675

RESUMO

While the epithelial cell cortex displays profound asymmetries in protein distribution and morphology along the apico-basal axis, the extent to which the cytoplasm is similarly polarized within epithelial cells remains relatively unexplored. We show that cytoplasmic organelles within C. elegans embryonic intestinal cells develop extensive apico-basal polarity at the time they establish cortical asymmetry. Nuclei and conventional endosomes, including early endosomes, late endosomes, and lysosomes, become polarized apically. Lysosome-related gut granules, yolk platelets, and lipid droplets become basally enriched. Removal of par-3 activity does not disrupt organelle positioning, indicating that cytoplasmic apico-basal asymmetry is independent of the PAR polarity pathway. Blocking the apical migration of nuclei leads to the apical positioning of gut granules and yolk platelets, whereas the asymmetric localization of conventional endosomes and lipid droplets is unaltered. This suggests that nuclear positioning organizes some, but not all, cytoplasmic asymmetries in this cell type. We show that gut granules become apically enriched when WHT-2 and WHT-7 function is disrupted, identifying a novel role for ABCG transporters in gut granule positioning during epithelial polarization. Analysis of WHT-2 and WHT-7 ATPase mutants is consistent with a WHT-2/WHT-7 heterodimer acting as a transporter in gut granule positioning. In wht-2(-) mutants, the polarized distribution of other organelles is not altered and gut granules do not take on characteristics of conventional endosomes that could have explained their apical mispositioning. During epithelial polarization wht-2(-) gut granules exhibit a loss of the Rab32/38 family member GLO-1 and ectopic expression of GLO-1 is sufficient to rescue the basal positioning of wht-2(-) and wht-7(-) gut granules. Furthermore, depletion of GLO-1 causes the mislocalization of the endolysosomal RAB-7 to gut granules and RAB-7 drives the apical mispositioning of gut granules when GLO-1, WHT-2, or WHT-7 function is disrupted. We suggest that ABC transporters residing on gut granules can regulate Rab dynamics to control organelle positioning during epithelial polarization.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Polaridade Celular , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Organelas/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Organelas/genética
2.
Cell Cycle ; 20(16): 1519-1526, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34266376

RESUMO

A central player in meiotic chromosome dynamics is the conserved Polo-like kinase (PLK) family. PLKs are dynamically localized to distinct structures during meiotic prophase and phosphorylate a diverse group of substrates to control homolog pairing, synapsis, and meiotic recombination. In a recent study, we uncovered the mechanisms that control the targeting of a meiosis-specific PLK-2 in C. elegans. In early meiotic prophase, PLK-2 localizes to special chromosome regions known as pairing centers and drives homolog pairing and synapsis. PLK-2 then relocates to the synaptonemal complex (SC) after crossover designation and mediates chromosome remodeling required for homolog separation. What controls this intricate targeting of PLK-2 in space and time? We discuss recent findings and remaining questions for the future.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Pareamento Cromossômico , Cromossomos , Meiose , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Prófase Meiótica I , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
3.
J Cell Biol ; 219(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32997737

RESUMO

Polo-like kinases (PLKs) play widely conserved roles in orchestrating meiotic chromosome dynamics. However, how PLKs are targeted to distinct subcellular localizations during meiotic progression remains poorly understood. Here, we demonstrate that the cyclin-dependent kinase CDK-1 primes the recruitment of PLK-2 to the synaptonemal complex (SC) through phosphorylation of SYP-1 in C. elegans. SYP-1 phosphorylation by CDK-1 occurs just before meiotic onset. However, PLK-2 docking to the SC is prevented by the nucleoplasmic HAL-2/3 complex until crossover designation, which constrains PLK-2 to special chromosomal regions known as pairing centers to ensure proper homologue pairing and synapsis. PLK-2 is targeted to crossover sites primed by CDK-1 and spreads along the SC by reinforcing SYP-1 phosphorylation on one side of each crossover only when threshold levels of crossovers are generated. Thus, the integration of chromosome-autonomous signaling and a nucleus-wide crossover-counting mechanism partitions holocentric chromosomes relative to the crossover site, which ultimately defines the pattern of chromosome segregation during meiosis I.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Pareamento Cromossômico , Segregação de Cromossomos , Meiose , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proteína Quinase CDC2/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Análise Espacial , Complexo Sinaptonêmico
4.
Genetics ; 214(2): 419-445, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31848222

RESUMO

ABC transporters couple ATP hydrolysis to the transport of substrates across cellular membranes. This protein superfamily has diverse activities resulting from differences in their cargo and subcellular localization. Our work investigates the role of the ABCG family member WHT-2 in the biogenesis of gut granules, a Caenorhabditis elegans lysosome-related organelle. In addition to being required for the accumulation of birefringent material within gut granules, WHT-2 is necessary for the localization of gut granule proteins when trafficking pathways to this organelle are partially disrupted. The role of WHT-2 in gut granule protein targeting is likely linked to its function in Rab GTPase localization. We show that WHT-2 promotes the gut granule association of the Rab32 family member GLO-1 and the endolysosomal RAB-7, identifying a novel function for an ABC transporter. WHT-2 localizes to gut granules where it could play a direct role in controlling Rab localization. Loss of CCZ-1 and GLO-3, which likely function as a guanine nucleotide exchange factor (GEF) for GLO-1, lead to similar disruption of GLO-1 localization. We show that CCZ-1, like GLO-3, is localized to gut granules. WHT-2 does not direct the gut granule association of the GLO-1 GEF and our results point to WHT-2 functioning differently than GLO-3 and CCZ-1 Point mutations in WHT-2 that inhibit its transport activity, but not its subcellular localization, lead to the loss of GLO-1 from gut granules, while other WHT-2 activities are not completely disrupted, suggesting that WHT-2 functions in organelle biogenesis through transport-dependent and transport-independent activities.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Grânulos Citoplasmáticos/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Biogênese de Organelas , Fenótipo , Transporte Proteico/genética , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
5.
Methods Mol Biol ; 1840: 163-180, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30141045

RESUMO

Studying nuclear positioning in developing tissues of the model nematode Caenorhabditis elegans greatly contributed to the discovery of SUN and KASH proteins and the formation of the LINC model. Such studies continue to make important contributions into both how LINC complexes are regulated and how defects in LINC components disrupt normal development. The methods described explain how to observe and quantify the following: nuclear migration in embryonic dorsal hypodermal cells, nuclear migration through constricted spaces in larval P cells, nuclear positioning in the embryonic intestinal primordia, and nuclear anchorage in syncytial hypodermal cells. These methods will allow others to employ nuclear positioning in C. elegans as a model to further explore LINC complex regulation and function.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animais , Biomarcadores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neurônios GABAérgicos/metabolismo , Membrana Nuclear/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...